

Selective NOx Recirculation Project

Principle Investigator

Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE

Industrial Partner

Sorbent Technologies Corporation

Project Team

Dr. Nigel Clark, Dr. Gregory Thompson, Ralph Nine, Krishna Aravelli, Chamila Tissera

COOPERATIVE AGREEMENT DE-FC26-02NT_41608

Awarded (10/01/2002, 36 Month Duration) \$749,913 Total Contract Value (\$599,287 DOE)

Overview

- Current NOx control technologies
- Introduction to Selective NOx Recirculation (SNR) technology
- Description and principles of SNR technology
- Proposed method of implementation
- Summary and project status

Project Goals

- Research and quantify, the mechanism and performance of the components needed for the NOx adsorption, desorption, and decomposition
- Examine the behavior of the system components through both experimental research and modeling
- Carry the research to a level where only a commercial design effort would be needed before it enters the marketplace
- Quantify the performance of this system on a 10 liter lean burn natural gas reciprocating engine and project the design for use on a large bore engine
- Enable future use of environmentally acceptable reciprocating natural gas engines to reduce NOx to 0.1 g/bhp-hr

Project Timeline

Current NOx Reduction Technologies

- SCR (Selective Catalytic Reduction)
 - Selective catalytic reduction of NOx using nitrogen compounds such as ammonia and urea
 - NOx conversion of 70% with durability at low to mid range temperatures
 - Needs sophisticated controls and infrastructure for urea distribution
- Lean NOx Catalyst (de-NOx catalyst)
 - Catalysts that selectively promote reduction of NOx by using hydrocarbons

$$C_m H_n + (2a + \frac{1}{2}b)O_2 \xrightarrow{Catalyst} (a + \frac{1}{4}b)N_2 + aCO_2 + (\frac{1}{2})bH_2O$$

- > Passive deNOx: Uses native hydrocarbons present in the exhaust
- > Active deNOx : Requires additional hydrocarbons to be introduced

Current NOx Reduction Technologies (cont.)

- Exhaust Gas Recirculation (EGR)
 - EGR is a method in which a portion of the exhaust is recirculated by mixing it with intake air
 - Dilution of the intake air and large heat absorbing capacity of CO₂ and H₂O vapor (present in the recirculated exhaust) are believed to reduce NOx production
 - □ EGR requires engine retrofit, and may impact engine or lubricant life

Limitations of Current NOx Reduction Technologies for Lean Burn Engines

- Net oxidizing exhaust gas
- Lean burn continuously (no scope for catalyst regeneration)
 - Relatively low levels of CO and HC in exhaust
- Fuel penalty and in-cylinder temperature concerns when run more rich
- Small temperature range of catalyst operation

Selective NOx Recirculation Technology (SNR)

 SNR involves NOx removal from lean exhaust gas by NOx adsorption and subsequent selective external re-circulation and decomposition of NOx in the combustion process

Literature Review

- DOE researchers found that they could "destroy" NOx desorbed from sorbents, used in at a pulverized coal power plant, by recycling it to a natural gas burner or the coal burner itself (Yeh,J.J., et al., 1987)
- In 1998 researchers from Mercedes-Benz, achieved 50% NOx reduction in the lean-burn case when a barium-based NOx adsorbent material was used. They termed the process "Selective NOx Recirculation" (Chaize, E., et al., 1998)

Basic Steps of SNR

- Adsorption: The exhaust gas is cooled and NOx is physically adsorbed onto a carbon based adsorbent material in the passive NOx trap
 - Factors influencing NOx adsorption
 - > Engine operating conditions
 - Amount of NOx being emitted
 - NOx storage media capacity
- **Desorption:** After an extended period, when the NOx quantification or breakthrough indicates trap saturation, it is quickly desorbed into a concentrated NOx system
 - Factors influencing desorption
 - > Capacity of the NOx adsorption media
 - Method of desorption

Basic Steps Of SNR (Cont.)

- **Decomposition:** The desorbed NOx is sent back to the air intake of the engine, where much of it is decomposed; converted to N₂ and O₂ or H₂O in the engine
 - □ It is presumed that the thermal NO production is decreased and the NO reduction via non-thermal NO reactions is increased (Chaize, E., et al., 1998)
 - □ Factors effecting NOx destruction
 - > Load on the engine
 - > Air-fuel ratio
 - > Engine speed

Note: exhaust bypasses the system while desorbing

M

Two-trap system

Modeling of One-trap and Two-trap Systems

- One-trap system
 - □ The adsorber must be off-line during the desorption (regeneration) phase
 - □ Per-cycle average NOx adsorption efficiency is predicted to be 90%
 - It is assumed that 95% of the adsorbed NOx, when desorbed will be decomposed by the engine
 - □ It is assumed that desorption will take up 5% of the duty cycle and allow 5% of the exhaust to bypass, leading to a theoretical NOx reduction of 81%
- Two-trap system
 - A higher NOx reduction of 86% can be expected if the two trap system is used, because no bypass period then exists

Technical Approach

- The engine will be instrumented for torque, speed, manifold air pressure and temperature, and exhaust temperature
- Engine-out emissions will be characterized by directing exhaust to a full-scale dilution tunnel and by quantifying the concentrations of the species
- A fast NOx analyzer (fNOx400) will be used to measure NOx concentration
- Adsorbent materials will be evaluated and optimized by Sorbent Technologies Corporation
- Adsorbent material will be placed in line with the engine exhaust, and its ability to capture the NOx will be examined under steady state conditions
- Engine operating conditions and control parameters will be used to alter flow through the medium and NOx concentration of the exhaust

Experimental Apparatus

- Cummins L10, lean burn natural gas engine (L-10-240G)
 - □ Inline 6 cylinder
 - □ Spark ignited
 - Turbocharged
 - □ Rated engine power 240hp
 - Throttled controlled (manufactured by Woodward)
- Eddy current dynamometer
 - □ 300 hp Mustang dynamometer
 - Controlled by DYN-LOC IV (manufactured by DyneSystems Co.)

NOx Analyzer

- Fast NOx Analyzer (manufactured by Cambustion Ltd.)
 - □ Response time of the order of 4 milliseconds
 - □ Wet sampling method
 - □ In-cylinder sampling
 - Simultaneous two channel sampling capability

r,e

Independent Observation of NOx Destruction in Lean-Burn Engines

NOx destruction =
$$\frac{X - (Y - Z)}{X}$$

Current Progress

- Understanding of NOx adsorption phenomena In Progress
- Installation of engine and characterization of its exhaust In Progress
- Design and setup of NOx injection system to evaluate destruction of NOx in lean-burn engines – In Progress

